Some Results on Search Complexity vs Accuracy
Mosur K. Ravishankar

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

rkm@cs.cmu.edu

ABSTRACT graph search enables us to find the globally optimum word sequence

This paper presents three different techniques applied in or deve'? the word lattice. This hypothesis is also injected into the N-best

oped during the 1996 Hub-4 broadcast news transcription task. Firs ,St'
an efficientshortest path graph searddgorithm is applied to the
word lattice created by Viterbi searchpgiucing a globally optimum
result. This reduces the word error rate by about 3-10% (relative)
depending on the test set. The execution time is at or close to re
time for most utterances. Secondgegmented N-best ligeneration
algorithm is described for producing compact N-best lists for very
long utterances. Finally, mporal smoothingechnique is com-

The final recognition results after rescoring the N-best list are pre-
sented in [1]. In this section we evaluate the shortest path search
Igorithm. It is interesting since it is compact and easy to imple-
ent, computationally efficient, and produces results fairly close to
N-bestrescoring, especially on clean speech. (It has previously been
used in the CMU Sphinx-II real-time decoder as a second, rescoring

pared to deleted interpolation. On one test set, temporal smoothinsgtep')
reduces the error rate by 3% for an 8% increase in search cost, while .
the latter improves by 6% for a 50% increase in search cost. 2.1. Problem Formulation
) The word lattice ppduced by the Viterbi beam search is transformed
1. Introduction into a Directed Acyclic Graph (DAG) as follows: A nodein the graph

. . epresents an instance of a wardvith a particular begin time. We
In this paper we describe the results of a number of search experf enote such a node i, ¢). There can be a range of end-times for

ments on the 1996 Hub-4 development and evaluation test sets. \/fés node. We create an edge from a néde t;) to node(w,, t,)
. . . [PRRN]
have also attempted to documentissues that arose during that cout :, — 1is one of the end times ofo:, ¢,).

and their various resolutions. Some of the techniques were onl

carried out on the development set and not used in the evaluation. The cost associated with an edge from a nede t;) to (w;, ¢,) is

In what follows, three different techniques are presented and evalJprmEd from two components: an acoustic score orhlog-llkellhood
ated. The shortest path graph search algorithm is described, alogd a language model Iog-prohlalg. The fqrmer IS :1 N agou_stkl]c
with experimental results, in Section 2. The N-best list generatio ore forw; from timet; to ¢; — 1, with w; b_elnlg the?_ onetic ng t
problem and a new segmented N-best list algorithm are presented pntext. For the language model log-proliigh let us first consider

: . : - e case of a simple bigram grammar. The log-probability is simply
Section 3. Finally, a temporal smoothing technique that overcome ‘ .)
noise by interpolating HMM state scores from neighboring framesltoﬁ’S (i]; Eﬁ:fo |;”n’()iza‘n-{gfg?rtlzlrZ%%Zg?ﬁﬂﬁ:g:vée'ghted sum of the'two
is described in Section 4. '

The DAG has distinguishestartandendnodes corresponding to the
2. Shortest Path Search sentence initial and sentence final silence words, respectively. We
compute the best (least cost) path through the DAG fronsthg

Most current speech recaigion systems, including CMU's, imple- %%de to theendnode using any of the standard shortest-path graph

ment multiple search passes. The first pass is usually a full sear
that produces a word lattice that then constrains the search space
succeeding passes ([7, 6, 8, 9]).

orithms. This gives the single best recognitiypothesis for the
erance, given the word lattice.

) .) Longer distance language models can be handled, in principle, by
The CMU evaluation decoder ([1]) is configured as follows. An o pjicating nodes and aiitnal edges as necessary. This is stil

"‘.“‘a' Viterbi beam searc_h plduce_s a single recognitidrypot.he- practical with trigram grammars, but with 4-gram or higher-order
sis as well as a word lattice that includes word segmentations an&rammars the growth in the DAG size can become unmanageable.

acoustic scores. Thehortest path graph seargiroduces another yyin 4 trigram model, in fact, it is not actually necessary to phys-

single, globally optimal hypothesi_s (using a trigram grammar) from'cally expand the DAG. One can reformulate the problem in terms
the word lattice. Finally, N-best lists are generated from the wordI

: of an edge cost given the predecessor edge, and applying language
lattice. model probabilitieslynamically.)

In broadcast speech, the presence of background or channel noigq1e best path search has a number of advantages:
spontaneous speaking styles, the unconstrained duration of utter-

ances, all tend to aggravate N-best list generation. There are a vary

large number of closely competing hypotheses. Therefore, the N- 1ysually, the language model log-prolii is weighted by aanguage
best list may not actually be the best N hypotheses. The shortest patfeightwhose optimum value is determined empirically.

e The result is globally optimum.

Tot | FO F1 F2 F3 F4 F5 FX

¢ The algorithm is implemented efficiently and compactly. Vit 391 272 | 344 458 | 50.0 | 45.6 | 408 66.7
¢ There is no pruning, unlike in the case of beam search or A%| Dag | 37.8 | 26.0 | 33.5| 44.7| 48.4| 45.0| 40.8| 62.9
search algorithms. This is very usefulin empirically optimizing Phase-1 (Before Adaptation)

parameters such as language weight and word insertion penalty. Tot | FO F1 F2 F3 F4 F5 FX
When any such parameter is varied in a search algorithm thaf Vit 37.3| 25.7| 340 | 426 | 495| 43.0| 37.5| 60.9
employs pruning, theffectivepruning threshold, and hence || Dag | 36.5 | 24.8 | 33.7 | 39.8 | 48.8| 42.5| 38.8 | 60.3
the active search subspace, is changed significantly. Thu§, Nbs | 35.9| 24.7| 33.1| 39.1 | 48.4| 42.1| 35.5| 58.3
comparisons of results with different parameter values can be Phase-2 (After Adaptation)

misleading. Since the shortest path algorithm searches the (Vit: Viterbi; Dag: Best path; Nbs: N-best search)
entire DAG with no pruning, the optimum parameter values

can be determined exactly.

Table 2: WER of individual steps in Hub-4 Unpatrtitioned Evaluation.

The practical applicability of this algorithm ioasionally limited,

however, by the size of the DAG. Noisy speech can resultin very large

DAGs. A second factor is the presencenoise wordnodels (such ~ Overall, we see an improvement in WER as a result of the best path
as silence and filled pauses) in the Sphinx-3 system. Noise wordsgarch. However, the improvement varies with the test condition.
are inserted in a manner transparent to the n-gram language mod#lis most prominent in the clean, or FO condition, where it comes

In creating the DAG, additional links must be created to bypasglosestto N-best rescoring. The performance improvement is more
noise word nodes, increasing the size of the DAG significantly. Ouivariable in the noisier conditions.

implementation aborts a DAG search if pre-specified computational .
or memory limits are exceeded. We now look at the execution speed of the best path DAG search al-

gorithm. Figure 1 shows the distribution of the normalized execution
: time (CPU time/utterance duration) for each utternitds a com-
2.2. Experlmental Results bined graph for both phases of both the partitionedwanghtitioned

As described in [1], the CMU evaluation run consisted of two phasesgvaluations.

In phase-1, the test set was decoded using conventional Viterbi beam

search, followed by the best path DAG search algorithm. The result 1200 7

of the latter was used for unsupervised MLLR adaptation. 0 Execution time —+—
1000 }]

In phase-2, the adapted acoustic models were used for decoding.

In addition, the context-dependent (CD) state output probabilities g 800 .

were interpolated with corresponding context-independent (Cl) ones §

to produce smoother models ([4]). Once again, a complete Viterbi £ 600 ,

beam search was followed by DAG search. An N-best rescoring bS]

process was the final step; the best path search results were added S 400]

to the N-best lists before the rescoring. (Also, the DAG search and

N-best rescoring steps used different trigram language models and 200 L i

weights, which were optimized independently.)

We present the word error rates (WER) of each step in each phase 0 0 50 100 150 200 250 300

of the evaluation run. In particular, we focus on the performance of CPU time (x Realtime)

the best path search relative to the other steps. Tables 1 and 2 show o
the word error rates of individual search steps in the partitioned and ~ Figure 1: Best Path Search Execution Time Distribution
unpatitioned evaluations, respectively.

Most utterances are processed at or close to real time. The utterances
Tot | FO F1 F2 F3 F4 F5 FX with very long execution times are typically noisy, or badly articu-
Vit 38.8(288|338 449 45.1| 45.6 | 45.2 | 64.6 || lated speech. The wordttae is very large in these cases to begin
Dag | 37.3| 27.2 | 32.4| 43.2| 43.3| 45.7 | 45.8 | 61.8| with.
Phase-1 (Before Adaptation)
Tot | FO | FL | F2 | FS] Fa | 5 | FX 3. N-best List Generation

Vit 36.3 | 27.2| 33.2| 40.4| 37.7| 44.1| 37.1 | 585
Dag | 355 | 26.1| 32.3| 39.7| 37.3| 43.9| 38.1| 57.8 The CMU evaluation system included N-best list generation ([7,

Nbs | 349 258| 32.1| 386 | 36.6 | 43.7 | 365 | 55.8 6]) for resc_:oring with higher-order N-gram language models._ Thg
Phase-2 (After Adaptation) unconstralne_d length of utterances in the br_oadcastnev_vs testimplies
(Vit: Viterbi; Dag: Best path; Nbs: N-best search) that N-best lists must be extre_m_ely Ion_g in order to improve the

' ' chances of the correct transcription being included in the list. In
short, the list size must grow exponentially with utterance length to

Table 1: WER of individual steps in Hub-4 Partitioned Evaluation. 2The experiments were run on high end DEC Alpha and Pentium Pro

workstations.

maintain a constantrate. We considered a number of options to de&iince all future extension to partial paths must proceed from one of
with this situation: these, there is no need to maintain duplicate grammar states. The
complete algorithm follows:

1. Using a front-end segmenter ([5]) to break long utterances into

shorter segments. /* plist[t] = partial path list with end time=t */

= * i *
2. Decoding complete utterances in the Viterbi pass, but usinéor/*(tl_oo&]fgr -Qrti{cullathlspoint atutttti;ance length */

silence information obtained thereby to identify subsegment (plist[t+1]..plist[T] are all empty) {
breaks during N-best generation. output plist[t]; /* Nbest list for segment */

3. Generatingeegmented N-best listsegment breaks are based compact plistitl; / Retain only unique grammer
onarticulation points(borrowing a term from graph theory) in states; e.g. last two words with trigram LM */
the word lattice. (See Section 3.1 below.) [* Start of new segment */

}
In all cases, the shorter the length of the segments, the better the/* Expand paths in plisti]; usual N-best step */
quality of the N-best lists. However, segment breaks also cause whilep(plist[g not eme))ty) {' P
breaks in linguistic context, and occasionally within a word. The p = best partial path in plist[t];
loss of relevant context information can introduce itiddal errors pop p off plist[t];
when N-best lists for each segment are rescored independently. This n = DAG node corresponding to final word in p;
problem becomes more acute as the average segment size shrinks. _
The obvious solution is to rescore N-best lists in the context of f°rfo(reez‘;gciu‘;cnedsst?r;e”if"io:"nf;’ {” in DAG) {
neighboring ones. But be_cause qf time and resource constraints D' = new partial path by appending n' to p:
we were not able to experiment with such possibilities before the compute path score for p’; /* add acoustic
evaluation deadline. and LM scores for n' *
insert p’ in plist[t];
Ultimately, kecause of time constraints, wetttedd on the front-
end segmentation as the simplest scheme. A front-end segmenter }
is more prone to errors, compared to HMM-based models that can }
detectsilences very accurately. To minimize errors introduced by the
segmenter and by linguistic context breaks, wilesston a relatively
long average segment duration of about 30 sec. A pruningbeamwidths employed to consider only the more promis-

))) o ing paths. The beam is applied to each N-best list independently.
Though it was not used in the evaluations, we did implement the

segmented N-best list generation algorithm, which has some simifhe significant feature in the above algorithm is the compaction
larities to the IBM envelope search ([11]). It camguce compact, step after a segment N-best list is output at an articulation point. It

low error N-best lists with efficiency and is described below. prevents the total number of partial hypotheses from growing expo-
nentially with the length of the utterance. The resulting efficiency
3.1. Segmented N-best Lists allows a greater number of hypotheses to be explored in each seg-

:))) ment. Yet, by treating each segment independently, the overall size
This algorithm first constructs a DAG from the word latticeguced o the list is kept compact.

by the Viterbi search, as described in Section 2. The DAG provides
candidates for paths to be explored during the N-best search. Thehis algorithm has been evaluated on the 1994 Hub1 evaluation test
result of the search is a set of segmentations of the utterance, ar@t using the standard 20K vocabulary. The lattice error rate on this
separate N-best lists within each segment. (In principle, segmentset is 5.5%. The straightforward N-best list (unsegmented), with
can be as short as one word.) This allows the generation of compagtlist size of 500, has about 8.4% error rate. This corresponds to
yetsufficiently rich N-bestlists. Furthermore, the segmentation leadsn oracle somehow chosing the best hypothesis from each N-best.
to greater efficiency in terms of processor and memory usage. The segmented N-best algorithm presented here has an error rate of
7.3%, a relative improvement of about 13%. At the same time, the

Like all N-best algorithms, this one works by maintaining a numbersegmented N-best files are about an order of magnitude smaller than
of partial paths and repeatedly expanding the best one by one worg}, . unsegmented ones.

In this case, several lists of partial hypotheses are maintained, one

list for each possible end time in the DAG. Each list is sorted in .

descending order of the partial path score. The lists are initialized 4. Temporal SmOOthmg of State Scores

with the utterance initial silence and all words that cacceedit (as One of the observations while testing the Sphinx-3 continuous acous-

determined by the DAG). tic models on the H4 development set was that some word instances
failed to even show up in the word lattice. They were pruned out

The algorithm proceeds in a time-synchronous manner, repeatedibmpletely. However, the same instances were decoded successfully

expanding the best partial path in the earliest end-time list thatis nonwith semi-continuous acoustic models. This basically pointed out

empty. However, whenever the algorithm moves in time to a newa mismatch between the sharp and well-defined continuous HMM

non-empty list, it first checks if that is also the last non-empty list. models, and the noisy speech in the broadcast news data.

If so, it marks ararticulation point and hence a segment boundary.

That s, all complete paths must pass through one of the partial pathigvo obvious ways to improve the recognition were the following:

ending in this list. A segment N-best list is generated at this point

and the list compacted to include only the unique grammar states. ¢ Widening the search beamwidth to reduce pruning errors.

e Smoothing the acoustic models, for example, by interpolat-We note that we did not employ this heuristic in the evaluations since
ing context dependent (CD) state scores with correspondingve did not have sufficient time to evaluate its utility or robustness.
context independent ones ([4]).

5. Summary

e have described three different techniques that were used during
the 1996 Hub-4 evaluations or tested during the development process.
We have seen that the shortest path graph search algorithm can be
But there is also a third alternative. If, in fact, the input speech isused to efficiently generate a globally optimum hypothesis. On
noisy, perhaps smoothing the input data instead of the models cdf€ Hub-4 task, it reduces word error rate consistently by about
improve performance. The basic idea is to smooth HMM state score3-10% while mostly running at or close to real time. It is also
in one frame by interpolating them with corresponding scores frontiSefulin optimizing other global search parameters such as language

The latter showed some improvement in recognitioouracy. How-
ever, in both cases, the effect was to increase the number of acti
models, and slow down the search significantly.

a neighboring frame: Weighta_md word insertion penalty: _V_\/e have als_o shown that te_mporal
smoothing of state output probabilities resultstmat 3% reduction
P'(s,t) = AP(s,t) + (1= M) P(s,t — 1) in WER on the FO condition of the development set with less than

10% increase in computational load.
where,s is any HMM state P(s, ¢) is its unsmoothed state score at
timet, P’ is the corresponding smoothed score, arislan empiri- Acknowledgements. This research was sponsored by the Depart-
cally determined constant@= X <= 1). Inasense, this sendsthe ment of the Navy, Naval Research Laboratory under Grant No.
speech through a low-pass filter, removing noise from it. InterestN00014-93-1-2005.
ingly, we found that such smoothing provides some improvement in . i]
recognitionaccuracy. Moreover, the search speed is affected muchwould like to thank Paul Placeway, Roni Rosenfeld, Eric Thayer,
less than in the alternatives mentioned earlier. and other members of the Sphinx group for their comments on the
contents of this paper.

4.1. Experimental Results

We applied each of the alternatives considered above in the Viterbi References)

beam search. The test sets were the FO and F1 conditions of the 1996L- Placeway, Fet al The 1996 Hub-4 Sphinx-3 SysteARPA

Hub-4 development set. Specifically, four different configurations ~ SLT Workshop, Feb. 1997.

were tried: 2. Seymore, K., Chen, S., Eskenazi, M., and Rosenfeld,dh;
guage and Pronunciation Modeling in the 1996 Hub 4 Evalu-

1. BASE: Baseline acoustic models with normal pruning ation, ARPA SLT Workshop, Feb. 1997.

beamwidth settings (the same as in the evaluations). 3. Parikh, V., Raj, B., and Stern, Bphinxlll: Adaptation and
2. WIDE: Baseline acoustic models with wider beamwidth. Eggpigg?tlon for the Hub4-96 TaskRPA SLT Workshop,

3. CD-CI: Interpolation of context-dependent and independent , Huang, X.D., Hwang, M-Y., Jiang, L., and Mahajan, M.
state scores using baseline acoustic models, and normal pruning - peleted Interpolation and Density Sharing for Continuous Hid-

beamwidth. den Markov Modeld CASSP-96.
4. TIME: Temporal smoothing of state scores using baseline 5. Siegler, M., Jain, U., Raj, B., and Stern,ARitomatic Segmen-
acoustic models, and normal pruning beamwidth. tation, Classification and Clustering Broadcast News Audio

ARPA SLT Workshop, Feb. 1997.
In Table 3 we show the word error rates and the number of HMM 6. Alleva, F., Huang, X., and Hwang, M\n Improved Search
models evaluated per frame in each of the four experiments above. Algorithm for Continuous Speech Recdigm. ICASSP, 1993.
On FO, simply widening the beamwidth is utterly useless. There 5 gchwartz. R. and Chow. Y.IThe Optimal N-Best Algorithm:

An Efficient Procedure for Finding Multiple Sentence Hypothe-
sesICASSP, Apr. 1990.

FO F1
8. Woodland, P.C. Leggetter, C.J., Odell, J.J., Valtchev, V. and
WER | HMM/Frm | WER | HMM/Frm Young, S.JThe Development of the 1994 HTK Large Vocabu-
BASE || 18.8 61K | 36.2 81K lary Speech Recognition Syste®RPA SLT Workshop, Jan.
WIDE 18.6 106K | 36.2 143K 1995, pp 104-109.
CD-Cl || 17.6 92K | 36.5 137K
TIME 18.2 65K | 36.1 87K 9. Murveit, H., Butzberger, J., Digalakis, V. and Weintraub,

M. Large-Vocabulary Dictation Using SRI's Decipher Speech
Recognition System: Progressive Search Technid@ASSP,

Table 3: Performance on 1996 H4 Dev. Set With Different Smooth- P 1993, voll, ppil-319 —11-322.
ing and Beamwidth Configurations. 10. Leggetter, C.J. and Woodland, PRlexible Speaker Adap-
tation Using Maximum Likelihood Linear Regressi&fRPA

is about a 75% increase in search complexity for no significant im- SLT Workshop, Jan. 1995, pp 110-115.

provement in recognitiomccuracy. The surprising result is that 11. Gopalakrishnan, P.S., Bahl, L.R., and Mercer, RA.Tree
temporal smoothing does much better, (though not as well as CD-ClI ~ Search Strategy for Large-Vocabulary Continuous Speech
smoothing) with less than 10% increase in search complexity. The ~ ReécognitionlCASSP, May 1995, pp 572-575.

WER on the F1 condition is unaffected by any of the techniques.

